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ABSTRACT 

In this paper, we obtain an analytical expression of the structural tensor, 

brought additional identities curvature of special generalized manifolds 

Kenmotsu type II and based on them are highlighted in some of the classes of 

this class of manifolds and obtain a local characterization of the selected 

classes. 
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1. INTRODUCTION 

The notions of almost contact structures and almost contact metric 

manifolds introduced by Gray, 1959. A careful analysis is subjected to 

special classes of almost contact metric manifolds. In 1972 Kenmotsu, 1972 

introduced the class of almost contact metric structures, characterized by the 

identity ∇𝑋(Φ)𝑌 = 〈Φ𝑋, 𝑌〉𝜉 − 𝜂(𝑌)Φ𝑋; 𝑋, 𝑌 ∈ 𝒳(𝑀). Kenmotsu structure, 

for example, arise naturally in the classification Tanno, 1969 connected 

almost contact metric manifolds whose automorphism group has maximal 

dimension . They have a number of remarkable properties. For example, the 

structure Kenmotsu normality and integrability. They are not a contact 

structure, and hence Sasakian. There are examples of Kenmotsu structures on 

odd Lobachevsky spaces of curvature (−1). Such structures are obtained by 
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the construction of the warped product 𝑹 ×𝑓 𝑪𝑛 in the sense of Bishop and 

O'Neill, 1969 complex Euclidean space and the real line, where 𝑓(𝑡) = 𝑐𝑒𝑡 

(see Kenmotsu, 1972). 
 

Kenmotsu varieties studied by many authors, such as Bagewadi  and 

Venkatesha, 2007; De and Pathak, 2004 and Pitis, 2007  and many others. 

But we would like to acknowledge the work of Kirichenko, 2001. In this 

paper it is proved that the class of manifolds Kenmotsu coincides with the 

class of almost contact metric manifolds derived from cosymplectic 

manifolds canonical transformation concircular cosymplectic structure. 

Further Umnova, 2002 studied Kenmotsu manifolds and their 

generalizations. The author identified class of almost contact metric 

manifolds, which is a generalization of manifolds Kenmotsu and named class 

of generalized (in short, GK-) Kenmotsu manifolds. In Behzad and Niloufar, 

2013, this class of manifolds is called the class of nearly Kenmotsu 

manifolds. The authors prove that the second-order symmetric closed 

recurrent tensor recurrence covector which annihilates the characteristic 

vector ξ, a multiple of the metric tensor g. In addition, the authors examine 

the Ф-recurrent nearly Kenmotsu manifolds. It is proved that Ф-recurrent 

nearly Kenmotsu manifold is Einstein and locally Ф-recurrent nearly 

Kenmotsu manifold is a manifold of constant curvature -1. In Umnova, 2002 

identifies two subclasses of generalized manifolds Kenmotsu called special 

generalized manifolds Kenmotsu (briefly, SGK-) I and type II. In Tshikuna-

Matamba, 2012 SGK-manifolds of type II are called nearly Kenmotsu 

manifolds. In Umnova, 2002 it is proved that the generalized manifolds of 

constant curvature Kenmotsu are Kenmotsu manifolds of constant curvature -

1. Moreover, it is proved that the class of SGK-manifolds of type II coincides 

with the class of almost contact metric manifolds, obtained from the closely 

cosymplectic manifolds canonical transformation closely cosymplectic 

structure, and given the local structure of these manifolds of constant 

curvature. 
 

This paper is organized as follows. In Section 2 we present the 

preliminary information needed in the sequel, we construct the space of the 

associated G-structure. In Section 3 we give the definition of generalized 

manifolds Kenmotsu and SGK-manifolds of type II, we give a complete 

group of structure equations, the components of Riemann-Christoffel tensor, 

the Ricci tensor and the scalar curvature in the space of the associated G-

structure SGK-manifolds of type II. In Section 4, we study the properties of 

the structure tensors SGK-manifold of type II. In Section 5, we discuss some 

identities satisfied by the Riemann curvature tensor SGK-manifolds of type 
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II. On the basis of identities allocated classes SGK-manifolds of type II and 

obtained a local characterization of the classes. The results obtained in 

sections 4 and 5 are the main results. 

 

2. PRELIMINARIES 

Let M – smooth manifold of dimension 2𝑛 + 1, 𝒳(𝑀) – 𝐶∞-module 

of smooth vector fields on M. In what follows, all manifolds, tensor fields, 

etc. objects are assumed to be smooth of class 𝐶∞. 

 

Definition 2.1 (Kirichenko, 2013): Almost contact structure on a manifold M 

is a triple (𝜂, 𝜉, Φ) of tensor fields on the manifold, where η – differential 1-

form, called the contact form of the structure, ξ – vector field, called the 

characteristic, Ф – endomorphism of 𝒳(𝑀)  called the structure 

endomorphism. 

 

In this 

 

1) 𝜂(𝜉) = 1;   2) 𝜂 ∘ Φ = 0;   3) Φ(𝜉) = 0;   4) Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉.       (1) 

 

If, moreover, M is fixed Riemannian structure 𝑔 =<⋅,⋅>, such that 

 
〈Φ𝑋, Φ𝑌〉 = 〈X, Y〉 − 𝜂(𝑋)𝜂(𝑌), 𝑋, 𝑌 ∈ 𝒳(𝑀),      (2) 

 

four (𝜂, 𝜉, Φ, 𝑔 =<∙,∙>)  is called an almost contact metric (shorter, AC-) 

structure. Manifold with a fixed almost contact (metric) structure is called an 

almost contact (metric (shorter, AC-)) manifold. 

 

Skew-symmetric tensor Ω(𝑋, 𝑌) = 〈𝑋, Φ𝑌〉, 𝑋, 𝑌 ∈ 𝒳(𝑀)  called the 

fundamental form of AC-structure (Kirichenko, 2013). 

 

Let (𝜂, 𝜉, Φ, 𝑔)  – almost contact metric structure on the manifold 

𝑀2𝑛+1 . In the module 𝒳(𝑀)  internally defined two complementary 

projectors 𝓂 = 𝜂 ⊗ 𝜉  and ℓ = 𝑖𝑑 − 𝓂 = −Φ2  (Kirichenko and Rustanov, 

2002); thus 𝒳(𝑀) = ℒ ⊕ ℳ , where ℒ = 𝐼𝑚(Φ) = 𝑘𝑒𝑟𝜂  – the so-called 

contact distribution, 𝑑𝑖𝑚ℒ = 2𝑛, ℳ = 𝐼𝑚𝓂 = 𝑘𝑒𝑟(Φ) = 𝐿(𝜉) – linear hull 

of structural vector (wherein ℓ  and 𝓂  are the projections onto the 

submodules ℒ, ℳ, respectively). Clearly, the distribution of the ℒ and ℳ are 

invariant with respect to Ф and mutually orthogonal. It is also obvious that 

Φ̃2 = −𝑖𝑑, 〈Φ̃𝑋, Φ̃𝑌〉 = 〈𝑋, 𝑌〉, 𝑋, 𝑌 ∈ 𝒳(𝑀), where Φ̃ = Φ|ℒ.  
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Consequently, {Φ̃𝑝, 𝑔𝑝|ℒ}  – Hermitian structure on the space ℒ𝑝 . 

Complexification 𝒳(𝑀)𝐂 module 𝒳(𝑀) is the direct sum 𝒳(𝑀)𝐂 = 𝐷Φ
√−1 ⊕

𝐷Φ
−√−1 ⊕ 𝐷Φ

0  eigensubspaces of structural endomorphism Ф, corresponding 

to the eigenvalues √−1, −√−1 and 0, respectively. Projectors on the terms of 

this direct sum will be, respectively, the endomorphisms Gray, 1959  𝜋 = 𝜎 ∘

ℓ = −
1

2
(Φ2 + √−1Φ), �̅� = �̅� ∘ ℓ =

1

2
(−Φ2 + √−1Φ), 𝓂 = 𝑖𝑑 + Φ2  

where 𝜎 =
1

2
(𝑖𝑑 − √−1Φ), �̅� =

1

2
(𝑖𝑑 + √−1Φ). 

 

The mappings 𝜎𝑝: ℒ𝑝 ⟶ 𝐷Φ
√−1  and �̅�𝑝: ℒ𝑝 ⟶ 𝐷Φ

−√−1  are 

isomorphism and anti-isomorphism, respectively, Hermitian spaces. 

Therefore, each point 𝑝 ∈ 𝑀2𝑛+1  may be connected space frames family 

𝑇𝑝(𝑀)𝐶  of the form (𝑝, 휀0, 휀1, … , 휀𝑛, 휀1̂, … , 휀�̂�), where 휀𝑎 = √2𝜎𝑝(𝑒𝑎), 휀�̂� =

√2�̅�𝑝(𝑒𝑎), 휀0 = 𝜉𝑝; where {𝑒𝑎} – orthonormal basis of Hermitian space ℒ𝑝. 

Such a frame called A-frame (Kirichenko and Rustanov, 2002). It is easy to 

see that the matrix components of tensors Φ𝑝 and 𝑔𝑝 in an A-frame have the 

form, respectively: 

 

(Φ𝑗
𝑖) = (

0 0 0

0 √−1𝐼𝑛 0

0 0 −√−1𝐼𝑛

) , (𝑔𝑖𝑗) = (
1 0 0
0 0 𝐼𝑛

0 𝐼𝑛 0
),     (3) 

 

where 𝐼𝑛 – identity matrix of order n. It is well known (Kirichenko, 2013) 

that the set of such frames defines a G-structure on M with structure group 

{1} × 𝑈(𝑛) , represented by matrices of the form (
1 0 0
0 𝐴 0
0 0 𝐴

) , where 

𝐴 ∈ 𝑈(𝑛) . This structure is called a G-connected (Kirichenko, 2013); 

Kirichenko and Rustanov, 2002). 

 

3. SPECIALLY  GENERALIZED  MANIFOLDS  KENMOTSU 

TYPE II 

Let (𝑀2𝑛+1, Φ, 𝜉, 𝜂, 𝑔 = 〈∙,∙〉) – almost contact metric manifold. 

Definition 3.1. (Abu-Sleem and Rustanov, 2015;Umnova, 2002): Class of 

almost contact metric manifolds, characterized by the identity 
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∇𝑋(Φ)𝑌 + ∇𝑌(Φ)𝑋 = −𝜂(𝑌)Φ𝑋 − 𝜂(𝑋)Φ𝑌; 𝑋, 𝑌 ∈ 𝒳(𝑀),     (4) 

called generalized manifolds Kenmotsu (shorter, GK-manifolds). 

 

Definition 3.2. (Abu-Sleem and Rustanov, 2015;Umnova, 2002):GK-

manifold with a closed contact form, i.e. 𝑑𝜂 = 0 are called SGK-manifolds of 

type II. 

 

This class of manifolds in (Tshikuna-Matamba, 2012) is a class of 

nearly Kenmotsu manifolds. We will refer to these manifolds, as in Umnova, 

2002 special generalized manifolds Kenmotsu type II, and briefly SGK-

manifolds of type II. 

 

In terms of the structure tensors Kirichenko, 2013,  Definition 2 can 

be summarized as follows. 

 

Definition 3.3. (Umnova, 2002) : GK-manifolds for which 𝐹𝑎𝑏 = 𝐹𝑎𝑏 = 0 

are called SGK-manifolds of type II. 

 

Let M – SGK-manifolds of type II. Then the first group of structure 

equations SGK-manifolds of type II takes the form (Abu-Sleem and 

Rustanov, 2015;Umnova, 2002). 

 

1) 𝑑𝜔 = 0;   2) 𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧ 𝜔𝑏 + 𝐶𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝛿𝑏

𝑎𝜔 ∧ 𝜔𝑏;   3) 𝑑𝜔𝑎 =
𝜃𝑎

𝑏 ∧ 𝜔𝑏 + 𝐶𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝛿𝑎
𝑏𝜔 ∧ 𝜔𝑏,     

  (5) 

where 
 

𝐶𝑎𝑏𝑐 =
√−1

2
Φ�̂�,𝑐̂

𝑎 ;      𝐶𝑎𝑏𝑐 = −
√−1

2
Φ𝑏,𝑐

�̂� ;      𝐶[𝑎𝑏𝑐] = 𝐶𝑎𝑏𝑐;      𝐶[𝑎𝑏𝑐] =

𝐶𝑎𝑏𝑐;      𝐶𝑎𝑏𝑐̅̅ ̅̅ ̅̅ = 𝐶𝑎𝑏𝑐.          (6) 

 

Theorem 2.1 in Abu-Sleem and Rustanov, 2015 takes the form: 
 

Theorem 3.1. Full group of structure equations SGK-manifolds of type II in 

the space of the associated G-structure has the form: 

 

1) 𝑑𝜔 = 0;   2) 𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧ 𝜔𝑏 + 𝐶𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝛿𝑏

𝑎𝜔 ∧
𝜔𝑏;   3) 𝑑𝜔𝑎 = 𝜃𝑎

𝑏 ∧ 𝜔𝑏 + 𝐶𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝛿𝑎
𝑏𝜔 ∧ 𝜔𝑏;   4) 𝑑𝜃𝑏

𝑎 =

−𝜃𝑐
𝑎 ∧ 𝜃𝑏

𝑐 + (𝐴𝑏𝑐
𝑎𝑑 − 2𝐶𝑎𝑑ℎ𝐶ℎ𝑏𝑐)𝜔𝑐 ∧ 𝜔𝑑;   5) 𝑑𝐶𝑎𝑏𝑐 + 𝐶𝑑𝑏𝑐𝜃𝑑

𝑎 +

𝐶𝑎𝑑𝑐𝜃𝑑
𝑏 + 𝐶𝑎𝑏𝑑𝜃𝑑

𝑐 = 𝐶𝑎𝑏𝑐𝑑𝜔𝑑 − 𝐶𝑎𝑏𝑐𝜔;   6) 𝑑𝐶𝑎𝑏𝑐 − 𝐶𝑑𝑏𝑐𝜃𝑎
𝑑 −

𝐶𝑎𝑑𝑐𝜃𝑏
𝑑 − 𝐶𝑎𝑏𝑑𝜃𝑐

𝑑 = 𝐶𝑎𝑏𝑐𝑑𝜔𝑑 − 𝐶𝑎𝑏𝑐𝜔.        (7) 
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where 
 

𝐴[𝑏𝑐]
𝑎𝑑 = 𝐴𝑏𝑐

[𝑎𝑑]
= 0, 𝐶𝑎[𝑏𝑐𝑑] = 0, 𝐶𝑎[𝑏𝑐𝑑] = 0.     (8) 

 

Taking the exterior derivative of (7(4)), we obtain: 

 

𝑑𝐴𝑏𝑐
𝑎𝑑 + 𝐴𝑏𝑐

ℎ𝑑𝜃ℎ
𝑎 + 𝐴𝑏𝑐

𝑎ℎ𝜃ℎ
𝑑 − 𝐴ℎ𝑐

𝑎𝑑𝜃𝑏
ℎ − 𝐴𝑏ℎ

𝑎𝑑𝜃𝑐
ℎ = 𝐴𝑏𝑐ℎ

𝑎𝑑 𝜔ℎ + 𝐴𝑏𝑐
𝑎𝑑ℎ𝜔ℎ −

2𝐴𝑏𝑐
𝑎𝑑𝜔,                                                                                                (9) 

 

where 

1) 𝐴𝑏[𝑐ℎ]
𝑎𝑑 = 0;   2) 𝐴𝑏𝑐

𝑎[𝑑ℎ]
= 0;   3) (𝐴𝑏[𝑐

𝑎𝑔
− 2𝐶𝑎𝑔𝑓𝐶𝑓𝑏[𝑐) 𝐶|𝑔|𝑑ℎ] =

0;   4) (𝐴𝑏𝑔
𝑎[𝑐

− 2𝐶𝑎[𝑐|𝑓|𝐶𝑓𝑏𝑔) 𝐶|𝑔|𝑑ℎ] = 0.      (10) 

 

Theorems 2.3, 2.4 and 2.5 of  Abu-Sleem and Rustanov, 2015 take the form: 

 

Theorem 3.2. Nonzero essential components of Riemann-Christoffel tensor 

in the space of the associated G-structure are of the form: 

 

1) 𝑅�̂�𝑐𝑑
𝑎 = 2𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑 − 2𝛿[𝑐

𝑎 𝛿𝑑]
𝑏 ;   2) 𝑅�̂�𝑐̂�̂�

𝑎 = −2𝐶𝑎𝑏[𝑐𝑑];   3) 𝑅00𝑏
𝑎 =

𝛿𝑏
𝑎;   4) 𝑅𝑏𝑐�̂�

𝑎 = 𝐴𝑏𝑐
𝑎𝑑 − 𝐶𝑎𝑑ℎ𝐶ℎ𝑏𝑐 − 𝛿𝑐

𝑎𝛿𝑏
𝑑.                  (11) 

         

Theorem 3.3. Covariant components of the Ricci tensor SGK-manifolds II in 

space of the associated G-structure are of the form: 

 

1) 𝑆00 = −2𝑛;   2) 𝑆𝑎�̂� = 𝑆�̂�𝑎 = 𝐴𝑎𝑐
𝑏𝑐 − 3𝐶𝑎𝑐𝑑𝐶𝑑𝑐𝑏 − 𝛿𝑎

𝑏,   (12) 

the other components are zero. 

 

Theorem 3.4. Scalar curvature χ of SGK-manifold of type II in the space of 

the associated G-structure is calculated by the formula 

 

𝜒 = 𝑔𝑖𝑗𝑆𝑖𝑗 = 2𝐴𝑎𝑏
𝑎𝑏 − 6𝐶𝑎𝑐𝑑𝐶𝑑𝑐𝑏 − 2𝑛.     (13) 

 

4. STRUCTURAL TENSORS SGK-MANIFOLDS OF TYPE II 

Consider the family of functions 𝐶 = {𝐶𝑖
𝑗𝑘}; 𝐶𝑎

�̂�𝑐̂ = 𝐶𝑎𝑏𝑐;  𝐶�̂�
𝑏𝑐 =

𝐶𝑎𝑏𝑐; all other components of the family C – zero. We show that this system 

functions on the space of the associated G-structure globally defined tensor of 

type (2,1) on M. In fact, since 𝛻Φ – tensor of type (2,1), by the fundamental 
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theorem of tensor analysis ∇Φ𝑗,𝑘
𝑖 = 𝑑Φ𝑗,𝑘

𝑖 + Φ𝑗,𝑘
𝑙 𝜃𝑙

𝑖 − Φ𝑙,𝑘
𝑖 𝜃𝑗

𝑙 − Φ𝑗,𝑙
𝑖 𝜃𝑘

𝑙 ≡

0 (𝑚𝑜𝑑 𝜔𝑘). In particular, ∇Φ�̂�,𝑐̂
𝑎 = 𝑑Φ�̂�,𝑐̂

𝑎 + Φ�̂�,𝑐̂
𝑑 𝜃𝑑

𝑎 − Φ�̂�,𝑐̂
𝑎 𝜃�̂�

�̂� − Φ�̂�,�̂�
𝑎 𝜃𝑐̂

�̂� ≡

0 (𝑚𝑜𝑑 𝜔𝑘). In view of (6), these relations can be rewritten as ∇𝐶𝑎
�̂�𝑐̂ =

𝑑𝐶𝑎𝑏𝑐 + 𝐶𝑑𝑏𝑐𝜃𝑑
𝑎 + 𝐶𝑎𝑑𝑐𝜃𝑑

𝑏 + 𝐶𝑎𝑏𝑑𝜃𝑑
𝑐 ≡ 0 (𝑚𝑜𝑑 𝜔𝑘) . Similarly, ∇𝐶�̂�

𝑏𝑐 =

𝑑𝐶𝑎𝑏𝑐 − 𝐶𝑑𝑏𝑐𝜃𝑎
𝑑 − 𝐶𝑎𝑑𝑐𝜃𝑏

𝑑 − 𝐶𝑎𝑏𝑑𝜃𝑐
𝑑 ≡ 0 (𝑚𝑜𝑑 𝜔𝑘).  

 

Consequently, ∇𝐶𝑖
𝑗𝑘 ≡ 0 (𝑚𝑜𝑑 𝜔𝑘). By the fundamental theorem of 

tensor analysis family of C defines a real tensor field of type (2,1) on M, 

which we denote by the same symbol. This tensor defines a mapping 

𝐶: 𝒳(𝑀) × 𝒳(𝑀) ⟶ 𝒳(𝑀) , defined by the formula 𝐶(𝑋, 𝑌) =
𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀�̂� + 𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀𝑎 , where {𝐶𝑎𝑏𝑐 , 𝐶𝑎𝑏𝑐}  – components of the 

structure tensor SGK-manifold of type II. This tensor of type (2,1) is called a 

composition and determines the module 𝒳(𝑀) the structure of the Q-algebra 

(Kirkchenko, 1983;Kirichenko, 1986). Map C has the following properties: 

 

1) 𝐶(𝜉, 𝑋) = 𝐶(𝑋, 𝜉) = 0;   2) 𝐶(𝑋, 𝑌) = −𝐶(𝑌, 𝑋);   3) 𝐶(Φ𝑋, 𝑌) =
𝐶(𝑋, Φ𝑌) = −Φ ∘ 𝐶(𝑋, 𝑌);   4) 𝜂 ∘ 𝐶(𝑋, 𝑌) = 0; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).    (14) 

 

In fact:  

1) Since 𝜉𝑎 = 𝜉𝑎 = 0 , then 𝐶(𝜉, 𝑋) = 𝐶𝑎𝑏𝑐𝜉𝑏𝑋𝑐휀�̂� + 𝐶𝑎𝑏𝑐𝜉𝑏𝑋𝑐휀𝑎 = 0 . 

Similarly, 𝐶(𝑋, 𝜉) = 𝐶𝑎𝑏𝑐𝑋𝑏𝜉𝑐휀�̂� + 𝐶𝑎𝑏𝑐𝑋𝑏𝜉𝑐휀𝑎 = 0.  

 

2)  In view of (6(3)), (6(4)) we have 

 

 𝐶(𝑋, 𝑌) = 𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀�̂� + 𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀𝑎 = 𝐶𝑎𝑐𝑏𝑋𝑏𝑌𝑐휀�̂� − 𝐶𝑎𝑐𝑏𝑋𝑏𝑌𝑐휀𝑎 =
−𝐶(𝑌, 𝑋). 

 

 3) 𝐶(Φ𝑋, 𝑌) = 𝐶𝑎𝑏𝑐(Φ𝑋)𝑏𝑌𝑐휀�̂� + 𝐶𝑎𝑏𝑐(Φ𝑋)𝑏𝑌𝑐휀𝑎 = √−1𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀�̂� −

√−1𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀𝑎 = 𝐶𝑎𝑏𝑐𝑋𝑏(√−1𝑌)
𝑐
휀�̂� + 𝐶𝑎𝑏𝑐𝑋𝑏(−√−1𝑌)

𝑐
휀𝑎 =

𝐶𝑎𝑏𝑐𝑋𝑏(Φ𝑌)𝑐휀�̂� + 𝐶𝑎𝑏𝑐𝑋𝑏(Φ𝑌)𝑐휀𝑎 = 𝐶(𝑋, Φ𝑌) , and also Φ ∘ 𝐶(𝑋, 𝑌) =

Φ ∘ (𝐶𝑎𝑏𝑐X𝑏𝑌𝑐휀�̂� + 𝐶𝑎𝑏𝑐X𝑏𝑌𝑐휀𝑎) = 𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐Φ(휀�̂�) + 𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐Φ(휀𝑎) =

−√−1𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀�̂� + √−1𝐶𝑎𝑏𝑐𝑋𝑏𝑌𝑐휀𝑎 = − (𝐶𝑎𝑏𝑐(√−1𝑋)
𝑏

𝑌𝑐휀�̂� +

𝐶𝑎𝑏𝑐(−√−1𝑋)
𝑏

𝑌𝑐휀𝑎) = 𝐶(Φ𝑋, 𝑌). 

 

Using the properties of the tensor C, we find an explicit analytic 

expression for this tensor. By definition, we have: [𝐶(휀�̂� , 휀𝑐̂)]𝑎휀𝑎 =

𝐶𝑎
�̂�𝑐̂휀𝑎 =

√−1

2
Φ�̂�,𝑐̂

𝑎 휀𝑎 =
√−1

2
(∇𝜀�̂�

(Φ)휀�̂�)
𝑎

휀𝑎 =
1

2
(Φ ∘ ∇𝜀�̂�

(Φ)휀�̂�)
𝑎

휀𝑎,  
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i.e. [𝐶(휀�̂� , 휀𝑐̂)]𝑎휀𝑎 =
1

2
(Φ ∘ ∇𝜀�̂�

(Φ)휀�̂�)
𝑎

휀𝑎 . Since the vectors {휀𝑎}  form a 

basis of the subspace (𝐷Φ
√−1)

𝑝
, and the vectors {휀�̂�} form a basis of the 

subspace (𝐷Φ
−√−1)

𝑝
 and projectors module 𝒳(𝑀)𝐶  to submodules 

𝐷Φ
√−1, 𝐷Φ

−√−1  are endomorphisms 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 + √−1Φ), �̅� = �̅� ∘

ℓ =
1

2
(−Φ2 + √−1Φ), then recorded the above equation can be rewritten as 

(Φ2 + √−1Φ) ∘ 𝐶(−Φ2𝑋 + √−1Φ𝑋, −Φ2𝑌 + √−1Φ𝑌) =
1

2
(Φ2 +

√−1Φ) ∘ (Φ ∘ ∇−Φ2𝑌+√−1Φ𝑌(Φ)(−Φ2𝑋 + √−1Φ𝑋)) ; ∀𝑋, 𝑌 ∈ 𝒳(𝑀) . 

Opening the brackets and simplifying, we obtain 

 

𝐶(𝑋, 𝑌) = −
1

8
{−Φ ∘ ∇Φ2𝑌(Φ)Φ2𝑋 + Φ ∘ ∇Φ𝑌(Φ)Φ𝑋 + Φ2 ∘

∇Φ2𝑌(Φ)Φ𝑋 + Φ2 ∘ ∇Φ𝑌(Φ)Φ2𝑋}.                              (15) 

 

For SGK-manifolds of type II have the equality Φ�̂�,𝑐
𝑎 = 0 , i.e. 

Φ�̂�,𝑐
𝑎 휀𝑎 = (∇𝜀𝑐

(Φ)휀�̂�)
𝑎

휀𝑎 = 0 . Since the vectors {휀𝑎}  form a basis of the 

subspace (𝐷Φ
√−1)

𝑝
, and the vectors {휀�̂�}  form a basis of the subspace 

(𝐷Φ
−√−1)

𝑝
 and projectors module 𝒳(𝑀)𝐶  to submodules 𝐷Φ

√−1, 𝐷Φ
−√−1  are 

endomorphisms 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 + √−1Φ), �̅� = �̅� ∘ ℓ =

1

2
(−Φ2 +

√−1Φ) , then recorded the above equation can be rewritten as (Φ2 +

√−1Φ) ∘ ∇Φ2𝑌+√−1Φ𝑌(Φ)(−Φ2𝑋 + √−1Φ𝑋) = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).  

 

Opening the brackets and simplifying, we obtain 

Φ2 ∘ ∇Φ2𝑌(Φ)Φ2𝑋 + Φ2 ∘ ∇Φ𝑌(Φ)Φ𝑋 − Φ ∘ ∇Φ𝑌(Φ)Φ2𝑋 + Φ ∘
∇Φ2𝑌(Φ)Φ𝑋 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀). We apply the operator Ф on both sides of 

this equation, then we have 

 

Φ ∘ ∇Φ2𝑌(Φ)Φ2𝑋 + Φ ∘ ∇Φ𝑌(Φ)Φ𝑋 + Φ2 ∘ ∇Φ𝑌(Φ)Φ2𝑋 − Φ2 ∘
∇Φ2𝑌(Φ)Φ𝑋 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).                   (16) 

 

Given the resulting equation (15), (16) takes the form: 

 

𝐶(𝑋, 𝑌) =
1

4
{Φ ∘ ∇Φ2𝑌(Φ)Φ2𝑋 − Φ2 ∘ ∇Φ2𝑌(Φ)Φ𝑋} = −

1

4
{Φ ∘

∇Φ𝑌(Φ)Φ𝑋 + Φ2 ∘ ∇Φ𝑌(Φ)Φ2𝑋}; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).     (17) 
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Thus we have proved. 

 

Theorem 4.1. The structure tensor SGK-manifold of type II is calculated by 

the formula 𝐶(𝑋, 𝑌) =
1

4
{Φ ∘ ∇Φ2𝑌(Φ)Φ2𝑋 − Φ2 ∘ ∇Φ2𝑌(Φ)Φ𝑋} =

−
1

4
{Φ ∘ ∇Φ𝑌(Φ)Φ𝑋 + Φ2 ∘ ∇Φ𝑌(Φ)Φ2𝑋}; ∀𝑋, 𝑌 ∈ 𝒳(𝑀). 

 

Since C is a tensor of type (2,1), then by the fundamental theorem of tensor 

analysis, we have: 

 

𝑑𝐶𝑖
𝑗𝑘 + 𝐶𝑙

𝑗𝑘𝜃𝑙
𝑖 − 𝐶𝑖

𝑙𝑘𝜃𝑗
𝑙 − 𝐶𝑖

𝑗𝑙𝜃𝑘
𝑙 = 𝐶𝑖

𝑗𝑘,𝑙𝜔𝑙,    (18) 

 

where {𝐶𝑖
𝑗𝑘,𝑙} – system functions, serving on the space of the bundle of all 

frames components of a covariant differential structure tensor C. Rewriting 

this equation in the space of the associated G-structure, we get: 

 

1) 𝐶𝑎𝑏,𝑐
0 = −𝐶𝑎𝑏𝑐;   2) 𝐶�̂��̂�,𝑐̂

0 = −𝐶𝑎𝑏𝑐;   3) 𝐶0�̂�,𝑐̂
𝑎 = 𝐶𝑎𝑏𝑐;   4) 𝐶𝑎𝑏,�̂�

𝑐 =

−𝐶𝑐𝑑ℎ𝐶ℎ𝑎𝑏;   5) 𝐶𝑏𝑐̂,𝑑
𝑎 = 𝐶𝑎𝑐ℎ𝐶ℎ𝑏𝑑;   6) 𝐶�̂�0,𝑐̂

𝑎 = −𝐶𝑎𝑏𝑐;   7) 𝐶�̂�𝑐,𝑑
𝑎 =

−𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑;   8) 𝐶�̂�𝑐̂,�̂�
𝑎 = 𝐶𝑎𝑏𝑐𝑑;   9) 𝐶�̂�𝑐̂,0

𝑎 = 𝐶𝑎𝑏𝑐;   10) 𝐶0𝑏,𝑐
�̂� =

𝐶𝑎𝑏𝑐;   11) 𝐶𝑏0,𝑐
�̂� = −𝐶𝑎𝑏𝑐;   12) 𝐶𝑏𝑐,𝑑

�̂� = 𝐶𝑎𝑏𝑐𝑑;   13) 𝐶𝑏𝑐,0
�̂� =

−𝐶𝑎𝑏𝑐;   14) 𝐶𝑏𝑐̂,�̂�
�̂� = −𝐶𝑐𝑑ℎ𝐶ℎ𝑎𝑏;   15) 𝐶�̂�𝑐,�̂�

�̂� = 𝐶𝑏𝑑ℎ𝐶ℎ𝑎𝑐;   16) 𝐶�̂�𝑐̂,𝑑
�̂� =

−𝐶𝑏𝑐ℎ𝐶ℎ𝑎𝑑.               (19) 

 

And the other components are zero. 

Thus we have proved the theorem. 

 

Theorem 4.2. The components of the covariant differential structure tensor C 

SGK-manifold of type II in the space of the associated G-structure are of the 

form: 1) 𝐶𝑎𝑏,𝑐
0 = −𝐶𝑎𝑏𝑐;   2) 𝐶�̂��̂�,𝑐̂

0 = −𝐶𝑎𝑏𝑐;   3) 𝐶0�̂�,𝑐̂
𝑎 = 𝐶𝑎𝑏𝑐;   4) 𝐶𝑎𝑏,�̂�

𝑐 =

−𝐶𝑐𝑑ℎ𝐶ℎ𝑎𝑏;   5) 𝐶𝑏𝑐̂,𝑑
𝑎 = 𝐶𝑎𝑐ℎ𝐶ℎ𝑏𝑑;   6) 𝐶�̂�0,𝑐̂

𝑎 = −𝐶𝑎𝑏𝑐;   7) 𝐶�̂�𝑐,𝑑
𝑎 =

−𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑;   8) 𝐶�̂�𝑐̂,�̂�
𝑎 = 𝐶𝑎𝑏𝑐𝑑;   9) 𝐶�̂�𝑐̂,0

𝑎 = 𝐶𝑎𝑏𝑐;   10) 𝐶0𝑏,𝑐
�̂� =

𝐶𝑎𝑏𝑐;   11) 𝐶𝑏0,𝑐
�̂� = −𝐶𝑎𝑏𝑐;   12) 𝐶𝑏𝑐,𝑑

�̂� = 𝐶𝑎𝑏𝑐𝑑;   13) 𝐶𝑏𝑐,0
�̂� =

−𝐶𝑎𝑏𝑐;   14) 𝐶𝑏𝑐̂,�̂�
�̂� = −𝐶𝑐𝑑ℎ𝐶ℎ𝑎𝑏;   15) 𝐶�̂�𝑐,�̂�

�̂� = 𝐶𝑏𝑑ℎ𝐶ℎ𝑎𝑐;   16) 𝐶�̂�𝑐̂,𝑑
�̂� =

−𝐶𝑏𝑐ℎ𝐶ℎ𝑎𝑑 and the other components are zero. 

 

Consider the map 𝒞: 𝒳(𝑀) × 𝒳(𝑀) × 𝒳(𝑀) → 𝒳(𝑀), given by the 

formula 
 

𝒞(𝑋, 𝑌, 𝑍) = 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑𝑋𝑐𝑌𝑑𝑍𝑏휀𝑎 + 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑𝑋𝑐𝑌𝑑𝑍𝑎휀�̂�.    (20) 
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Theorem 4.3. For SGK-manifold of type II have the following relations: 

 

1) 𝒞(𝑋1 + 𝑋2, 𝑌, 𝑍) = 𝒞(𝑋1, 𝑌, 𝑍) + 𝒞(𝑋2, 𝑌, 𝑍); 2) 𝒞(Φ𝑋, 𝑌, 𝑍) =
𝒞(𝑋, Φ𝑌, 𝑍) = −𝒞(𝑋, 𝑌, Φ𝑍) = Φ ∘ 𝒞(𝑋, 𝑌, 𝑍); 3) 𝒞(𝑋, 𝑌, Φ2𝑍) =
−𝒞(𝑋, 𝑌, 𝑍);   4) 𝜂 ∘ 𝒞(𝑋, 𝑌, 𝑍) = 0;   5) 𝒞(𝑋, 𝑌, 𝜉) = 𝒞(𝑋, 𝜉, 𝑌) =
𝒞(𝜉, 𝑋, 𝑌) = 0;   6) 𝒞(𝑋, 𝑌, 𝑍) = −𝒞(𝑌, 𝑋, 𝑍);   7) 〈𝒞(𝑋, 𝑌, 𝑍), 𝑊〉 =
−〈𝒞(𝑋, 𝑌, 𝑊), 𝑍〉;   8) 𝒞(𝑋, 𝑌, 𝑍1 + 𝑍2) =
𝒞(𝑋, 𝑌, 𝑍1) + 𝒞(𝑋, 𝑌, 𝑍1);  ∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝒳(𝑀).     (21) 

 

Proof. The proof is by direct calculation. For example, 

 

𝒞(𝑋1 + 𝑋2, 𝑌, 𝑍) = 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋1 + 𝑋2)𝑐𝑌𝑑𝑍𝑏휀𝑎 + 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋1 +
𝑋2)𝑐𝑌𝑑𝑍𝑎휀�̂� = 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋1)𝑐𝑌𝑑𝑍𝑏휀𝑎 + 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋2)𝑐𝑌𝑑𝑍𝑏휀𝑎 +
𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋1)𝑐𝑌𝑑𝑍𝑎휀�̂� + 𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑(𝑋1)𝑐𝑌𝑑𝑍𝑎휀�̂� = 𝒞(𝑋1, 𝑌, 𝑍) +

𝒞(𝑋2, 𝑌, 𝑍). 

 

Similarly we prove the remaining properties. 

 

We consider the endomorphism c, given by an A-frame matrix  

 

(𝐶𝑏
𝑎) = (𝐶𝑎𝑐𝑑𝐶𝑑𝑐𝑏). 

 

This endomorphism Hermitian symmetric, and hence diagonalizable in a 

suitable A-frame, ie, in this frame 

 

𝐶𝑏
𝑎 = 𝐶𝑏𝛿𝑏

𝑎,      (22) 

 

where {𝐶𝑏}  – the eigenvalues of this endomorphism. Moreover, the 

Hermitian form ℭ(𝑋, 𝑌) = 𝐶𝑏
𝑎𝑋𝑏𝑌𝑎 , corresponding to this endomorphism, 

positive semi-definite, since ℭ(𝑋, 𝑋) = 𝐶𝑏
𝑎𝑋𝑏𝑋𝑎 = 𝐶𝑎𝑐𝑑𝐶𝑑𝑐𝑏𝑋𝑏𝑋𝑎 =

∑ |𝐶𝑐𝑑𝑎𝑋𝑎|2
𝑐,𝑑 ≥ 0. Consequently, 𝐶𝑎 ≥ 0, 𝑎 = 1,2, … , 𝑛. 

 

Let us consider some properties of the tensor 𝛻𝐶. 

 

Using the restore identity (Kirichenko, 2013; Kirichenko and Rustanov,  

2002) to the relations (19), we obtain the following theorem. 

 

Theorem 4.4. 𝛻𝐶 tensor has the following properties: 
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1)∇𝜉(𝐶)(𝜉, 𝑋) = −∇𝜉(𝐶)(𝑋, 𝜉) = 0;  2)∇Φ2𝑋(𝐶)(𝜉, Φ2𝑌) =

−∇Φ𝑋(𝐶)(ξ, Φ𝑌) = ∇𝑋(𝐶)(𝜉, 𝑌) = 𝐶(𝑋, 𝑌);  3)∇𝜉(𝐶)(𝑋, 𝑌) −

∇𝜉(𝐶)(Φ𝑋, Φ𝑌) = −2𝐶(𝑋, 𝑌);  4)∇Φ2𝑋(𝐶)(Φ2𝑌, Φ2𝑍) −

∇Φ2𝑋(𝐶)(Φ𝑌, Φ𝑍) − ∇Φ𝑋(𝐶)(Φ2𝑌, Φ𝑍) − ∇Φ𝑋(𝐶)(Φ𝑌, Φ2𝑍) =
4〈𝑋, 𝐶(𝑌, 𝑍)〉𝜉; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀) .                             (23) 

 

From the (9) by the fundamental theorem of tensor analysis follows 

that the family of functions {𝐴𝑎𝑏
𝑐𝑑 } in the space of the associated G-structure, 

symmetric with respect to the upper and lower indices form a pure tensor on 

𝑀2𝑛+1  called tensor Ф-holomorphic sectional curvature (Abu-Saleem and 

Rustanov, 2015;Umnova, 2002). This tensor defines a mapping 𝐴: 𝒳(𝑀) ×
𝒳(𝑀) × 𝒳(𝑀) ⟶ 𝒳(𝑀), which is given by 𝐴(𝑋, 𝑌, 𝑍) = 𝐴𝑎𝑏

𝑐𝑑 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 +

𝐴�̂��̂�
𝑐̂�̂� 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 . Direct calculation is easy to check that the tensor Ф-

holomorphic sectional curvature has the following properties: 

 

1) 𝐴(Φ𝑋, 𝑌, 𝑍) = 𝐴(𝑋, Φ𝑌, 𝑍) =
−𝐴(𝑋, 𝑌, Φ𝑍); 2) 𝐴(𝑍, 𝑋, Φ2𝑌) = −𝐴(𝑍, 𝑋, 𝑌);   3) 𝜂 ∘
𝐴(𝑋, 𝑌, 𝑍) = 0;   4) 𝐴(ξ, 𝑌, 𝑍) = 𝐴(𝑋, ξ, 𝑍) = 𝐴(𝑋, 𝑌, ξ) =
0;   5) 𝐴(𝑋, 𝑌, 𝑍) = 𝐴(𝑌, 𝑋, 𝑍);   6) 〈𝐴(𝑋, 𝑌, 𝑍), 𝑊〉 =
〈𝐴(𝑋, 𝑌, 𝑊), 𝑍〉;  ∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝒳(𝑀).                 (24) 

 

In fact,  

𝐴(Φ𝑋, 𝑌, 𝑍) = 𝐴𝑎𝑏
𝑐𝑑 (Φ𝑋)𝑎𝑌𝑏𝑍𝑑휀𝑐 + 𝐴�̂��̂�

𝑐̂�̂� (Φ𝑋)𝑎𝑌𝑏𝑍𝑑휀𝑐 =

√−1𝐴𝑎𝑏
𝑐𝑑 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 − √−1𝐴�̂��̂�

𝑐̂�̂� 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 = 𝐴𝑎𝑏
𝑐𝑑 𝑋𝑎(Φ𝑌)𝑏𝑍𝑑휀𝑐 +

𝐴�̂��̂�
𝑐̂�̂� 𝑋𝑎(Φ𝑌)𝑏𝑍𝑑휀𝑐 = 𝐴(𝑋, Φ𝑌, 𝑍). 

 

Similarly,  

𝐴(Φ𝑋, 𝑌, 𝑍) = 𝐴𝑎𝑏
𝑐𝑑 (Φ𝑋)𝑎𝑌𝑏𝑍𝑑휀𝑐 + 𝐴�̂��̂�

𝑐̂�̂� (Φ𝑋)𝑎𝑌𝑏𝑍𝑑휀𝑐 =

√−1𝐴𝑎𝑏
𝑐𝑑 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 − √−1𝐴�̂��̂�

𝑐̂�̂� 𝑋𝑎𝑌𝑏𝑍𝑑휀𝑐 = −𝐴𝑎𝑏
𝑐𝑑 𝑋𝑎Y𝑏(Φ𝑍)𝑑휀𝑐 −

𝐴�̂��̂�
𝑐̂�̂� 𝑋𝑎Y𝑏(Φ𝑍)𝑑휀𝑐 = −𝐴(𝑋, 𝑌, Φ𝑍). 

 

Property 5 follows from the symmetry of the tensor 𝐴𝑎𝑏
𝑐𝑑  on the lower 

pair of indices. The symmetry of the upper pair of indices implies property 6. 

 

Thus, the theorem is proved. 

 

Theorem 4.5. Tensor Ф-holomorphic sectional curvature SGK-manifold of 

type II has the following properties:  
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1) 𝐴(Φ𝑋, 𝑌, 𝑍) = 𝐴(𝑋, Φ𝑌, 𝑍) = −𝐴(𝑋, 𝑌, Φ𝑍); 2) 𝐴(𝑍, 𝑋, Φ2𝑌) =
−𝐴(𝑍, 𝑋, 𝑌);   3) 𝜂 ∘ 𝐴(𝑋, 𝑌, 𝑍) = 0;   4) 𝐴(ξ, 𝑌, 𝑍) = 𝐴(𝑋, ξ, 𝑍) =
𝐴(𝑋, 𝑌, ξ) = 0;   5) 𝐴(𝑋, 𝑌, 𝑍) = 𝐴(𝑌, 𝑋, 𝑍);   6) 〈𝐴(𝑋, 𝑌, 𝑍), 𝑊〉 =

〈𝐴(𝑋, 𝑌, 𝑊), 𝑍〉;  ∀𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝒳(𝑀). 

 

5. CURVATURE IDENTITIES SGK-MANIFOLDS OF TYPE II 

In Kirichenko, 2013; Kirichenko and Rustanov, 2002 allocated the 

class of quasi-sasakian manifolds, the Riemann curvature tensor which 

satisfies identity 𝑅(𝜉, Φ2𝑋)Φ2𝑌 − 𝑅(𝜉, Φ𝑋)Φ𝑌 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀) . 

Following the idea described in these papers, we look at some of the identity 

satisfied by the Riemann curvature tensor SGK-manifolds of type II. 

 

We apply the restore identity (Kirichenko, 2013; Kirichenko and 

Rustanov, 2002) to the equations: 𝑅00𝑏
0 = 𝛿𝑏

0 = 0; 𝑅00𝑏
𝑎 = 𝛿𝑏

𝑎;  𝑅00𝑏
�̂� = 𝛿𝑏

�̂� =

0, i.e. to equality 𝑅00𝑏
𝑖 = 𝛿𝑏

𝑖 . In fixed point 𝑝 ∈ 𝑀 last equality is equivalent 

to the relation 𝑅(𝜉, 휀𝑏)𝜉 = 휀𝑏 . Since 𝜉𝑝 = 휀0 , and the vectors {휀𝑎} form a 

basis of the subspace (𝐷Φ
√−1)

𝑝
, given that the projectors module 𝒳(𝑀)𝐶 to 

submodules 𝐷Φ
√−1  and 𝐷Φ

0  are endomorphisms 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 +

√−1Φ), 𝓂 = 𝑖𝑑 + Φ2, identity 𝑅(𝜉, 휀𝑏)𝜉 = 휀𝑏 can be rewritten in the form 

𝑅(𝜉, Φ2𝑋 + √−1Φ𝑋)𝜉 = Φ2𝑋 + √−1Φ𝑋; ∀𝑋 ∈ 𝒳(𝑀).  

 

Expanding this relation is linear and separating the real and 

imaginary parts of the resulting equation, we obtain an equivalent identity: 

 

𝑅(𝜉, Φ2𝑋)𝜉 = Φ2𝑋; ∀𝑋 ∈ 𝒳(𝑀).    (25) 

 

We say that the identity (25), the first additional identity curvature 

SGK-manifold of type II. 

 

Since 𝑅(𝜉, 𝜉)𝜉 = 0  and Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉 , then (25) takes the 

form: 
 

𝑅(𝜉, 𝑋)𝜉 = −𝑋 + 𝜂(𝑋)𝜉; ∀𝑋 ∈ 𝒳(𝑀).    (26) 

 

Definition 5.1. We call the AC-manifold manifold of class 𝑅1, if its curvature 

tensor satisfies 
 

𝑅(𝜉, 𝑋)𝜉 = 0;  ∀𝑋 ∈ 𝒳(𝑀).     (27) 
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Let M – SGK-manifold of type II, which is a manifold of class 𝑅1. 

Then its Riemann curvature tensor satisfies (27). On the space of the 

associated G-structure relation (27) can be written as: 𝑅00𝑗
𝑖 𝑋𝑗 = 0. In view of 

(11), the last equation can be written as: 𝑅00𝑏
𝑎 𝑋𝑏 + 𝑅00�̂�

�̂� 𝑋�̂� = 0 . This 

equality holds if and only if 𝑅00𝑏
𝑎 = 𝑅00�̂�

�̂� = 0. But since 𝑅00𝑏
𝑎 = 𝛿𝑏

𝑎 ≠ 0, 

then SGK-manifold of type II is not a manifold class 𝑅1. 

 

Thus we have proved. 

 

Theorem 5.1. SGK-manifold of type II is not a manifold class 𝑅1. 

 

Since 𝑅0𝑎𝑏
0 = 0, 𝑅0𝑎𝑏

𝑐 = 0, 𝑅0𝑎𝑏
𝑐̂ = 0, i.e. 𝑅0𝑎𝑏

𝑖 = 0. In fixed point 𝑝 ∈ 𝑀 it 

is obviously equivalent to the relation 𝑅(휀𝑎 , 휀𝑏)𝜉 = 0. Since 𝜉𝑝 = 휀0, and the 

vectors {휀𝑎} form a basis of the subspace (𝐷Φ
√−1)

𝑝
, and projectors module 

𝒳(𝑀)𝐶  to submodules 𝐷Φ
√−1  and 𝐷Φ

0  will endomorphisms 𝜋 = 𝜎 ∘ ℓ =

−
1

2
(Φ2 + √−1Φ), 𝓂 = 𝑖𝑑 + Φ2 , identity 𝑅(휀𝑎 , 휀𝑏)𝜉 = 0 can be rewritten 

in the form 𝑅(Φ2𝑋 + √−1Φ𝑋, Φ2𝑌 + √−1Φ𝑌)𝜉 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).  

 

Expanding this relation is linear and separating the real and imaginary parts 

of the resulting equation, we obtain an equivalent identity: 

 

𝑅(Φ2𝑋, Φ2𝑌)𝜉 − 𝑅(Φ𝑋, Φ𝑌)𝜉 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).    (28) 

 

Taking into account the equality Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉  last equation 

can be written as  

 

𝑅(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑅(𝜉, 𝑌)𝜉 − 𝜂(𝑌)𝑅(𝑋, 𝜉)𝜉 + 𝜂(𝑋)𝜂(𝑌)𝑅(𝜉, 𝜉)𝜉 −
𝑅(Φ𝑋, Φ𝑌)𝜉 = 𝑅(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝑅(𝜉, 𝑌)𝜉 + 𝜂(𝑌)𝑅(𝜉, 𝑋)𝜉 −
𝑅(Φ𝑋, Φ𝑌)𝜉 = 0,  

 

which in view of (26) takes the form: 

 

𝑅(Φ𝑋, Φ𝑌)𝜉 − 𝑅(𝑋, 𝑌)𝜉 = −𝜂(𝑌)𝑋 + 𝜂(𝑋)𝑌; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).   (29) 

 

Similarly, applying the restore identity to the equalities 𝑅0𝑎�̂�
0 = 0, 

𝑅0𝑎�̂�
𝑐 = 0, 𝑅0𝑎�̂�

𝑐̂ = 0, i.e. 𝑅0𝑎�̂�
𝑖 = 0, we obtain the identity:  

 

 

𝑅(Φ2𝑋, Φ2𝑌)𝜉 + 𝑅(Φ𝑋, Φ𝑌)𝜉 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).    (30) 
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From the (28) and (30), we have: 

 

𝑅(Φ2𝑋, Φ2𝑌)𝜉 = 𝑅(Φ𝑋, Φ𝑌)𝜉 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).    (31) 

 

Taking into account the equality Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉  and identity 

(26), the identity of 𝑅(Φ2𝑋, Φ2𝑌)𝜉 = 0 takes the form: 

 

𝑅(𝑋, 𝑌)𝜉 = −𝜂(𝑋)𝑌 + 𝜂(𝑌)𝑋; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).    (32) 

 

Using the restore identity to the relations 𝑅𝑎0𝑏
0 = 0 , 𝑅𝑎0𝑏

𝑐 = 0 , 

𝑅𝑎0𝑏
𝑐̂ = 0, i.e. 𝑅𝑎0𝑏

𝑖 = 0, we obtain the identity: 

 

𝑅(𝜉, Φ2𝑋)Φ2𝑌 − 𝑅(ξ, Φ𝑋)Φ𝑌 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).   (33) 

 

In view of (26) and the relations 𝑅(𝜉, 𝜉)𝜉 = 0, Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉 

last identity can be rewritten as: 

 

𝑅(𝜉, 𝑋)𝑌 − 𝑅(ξ, Φ𝑋)Φ𝑌 = −𝜂(𝑌)𝑋 + 𝜂(𝑋)𝜂(𝑌)𝜉; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).   (34) 

 

Now apply recovery procedure identity to the equalities 𝑅𝑎0�̂�
0 =

−𝛿𝑎
𝑏𝜉0, 𝑅𝑎0�̂�

𝑐 = −𝛿𝑎
𝑏𝜉𝑐 = 0, 𝑅𝑎0�̂�

𝑐̂ = −𝛿𝑎
𝑏𝜉𝑐̂ = 0, i.e. 𝑅𝑎0�̂�

𝑖 = −𝛿𝑎
𝑏𝜉𝑖. In fixed 

point 𝑝 ∈ 𝑀 last equality is equivalent to the relation 𝑅(𝜉, 휀�̂�)휀𝑎 = −𝛿𝑎
𝑏𝜉 =

−〈휀𝑎 , 휀�̂�〉𝜉 . Since 𝜉𝑝 = 휀0 , vectors {휀𝑎}  form a basis of the subspace 

(𝐷Φ
√−1)

𝑝
, and the vectors {휀�̂�} form a basis of the subspace (𝐷Φ

−√−1)
𝑝

 and 

projectors of module 𝒳(𝑀)𝐶  to submodules 𝐷Φ
√−1, 𝐷Φ

−√−1  and 𝐷Φ
0  will 

endomorphisms 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 + √−1Φ), �̅� = �̅� ∘ ℓ =

1

2
(−Φ2 +

√−1Φ), 𝓂 = 𝑖𝑑 + Φ2 , the identity of 𝑅(𝜉, 휀�̂�)휀𝑎 = −〈휀𝑎 , 휀�̂�〉𝜉  can be 

rewritten in the form of 𝑅(𝜉, −Φ2𝑋 + √−1Φ𝑋)(Φ2𝑌 + √−1Φ𝑌) =

−〈−Φ2𝑋 + √−1Φ𝑋, Φ2𝑌 + √−1Φ𝑌〉𝜉; ∀𝑋, 𝑌 ∈ 𝒳(𝑀) . Expanding this 

relation is linear and separating the real and imaginary parts of the resulting 

equation, we obtain an equivalent identity: 

 

𝑅(𝜉, Φ2𝑋)(Φ2𝑌) + 𝑅(𝜉, Φ𝑋)Φ𝑌 = −2〈Φ𝑋, Φ𝑌〉𝜉 = −2〈𝑋, 𝑌〉𝜉 +
2𝜂(𝑋)𝜂(𝑌)𝜉; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).                                          (35) 

 

We say that the identity (35), the second additional identity curvature 

SGK-manifold of type II. 
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From (33) and (35) we have: 

 

𝑅(𝜉, Φ2𝑋)(Φ2𝑌) = 𝑅(𝜉, Φ𝑋)Φ𝑌 = −〈Φ𝑋, Φ𝑌〉𝜉 = −〈𝑋, 𝑌〉𝜉 +
𝜂(𝑋)𝜂(𝑌)𝜉; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).                                          (36) 

 

Note 1. The identity of 𝑅(𝜉, Φ2𝑋)(Φ2𝑌) = −〈𝑋, 𝑌〉𝜉 + 𝜂(𝑋)𝜂(𝑌)𝜉, taking 

into account (15) and the equation Φ2 = −𝑖𝑑 + 𝜂 ⊗ 𝜉, can be written as: 

 

𝑅(𝜉, 𝑋)𝑌 = 𝜂(𝑌)Φ2𝑋 − 〈Φ𝑋, Φ𝑌〉𝜉 = −〈𝑋, 𝑌〉𝜉 − 𝜂(𝑌)𝑋 +
2𝜂(𝑋)𝜂(𝑌)𝜉; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).      (37) 

 

Definition 5.2. We call the AC-manifold manifold of class 𝑅2, if its curvature 

tensor satisfies the equation: 

 

𝑅(𝜉, Φ2𝑋)(Φ2𝑌) + 𝑅(𝜉, Φ𝑋)Φ𝑌 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀).   (38) 

 

Let M – SGK-manifold of type II, which is a manifold of class 𝑅2. 

Then its Riemann curvature tensor satisfies the condition (38). In view of 

(33) the identity (38) can be written as: 𝑅(𝜉, Φ2𝑋)(Φ2𝑌) = 𝑅(𝜉, Φ𝑋)Φ𝑌 =
0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀) . On the space of the associated G-structure relation 

𝑅(𝜉, Φ𝑋)Φ𝑌 = 0; ∀𝑋, 𝑌 ∈ 𝒳(𝑀) can be written as: 𝑅𝑗0𝑘
𝑖 (Φ𝑋)𝑘(Φ𝑌)𝑗 = 0. 

In view of (11) and the form of the matrix Ф, the last equation can be written 

as: 𝑅𝑎0�̂�
0 𝑋�̂�𝑌𝑎 + 𝑅�̂�0𝑏

0 𝑋𝑏𝑌�̂� = 0. This equality holds if and only if 𝑅𝑎0�̂�
0 =

𝑅�̂�0𝑏
0 = 0. But since 𝑅𝑎0�̂�

0 = −𝛿𝑎
𝑏 ≠ 0, then the SGK-manifold of type II is 

not a manifold class 𝑅2.  

 

Thus we have proved. 

 

Theorem 5.2. SGK-manifold of type II is not a manifold class 𝑅2. 

 

Since 𝑅𝑎𝑏𝑐
0 = −2𝐶0𝑎[𝑏𝑐] = 0; 𝑅𝑎𝑏𝑐

𝑑 = −2𝐶�̂�𝑎[𝑏𝑐] = 0; 𝑅𝑎𝑏𝑐
�̂� = −2𝐶𝑑𝑎[𝑏𝑐] , 

i.e. 𝑅𝑎𝑏𝑐
𝑖 = −2𝐶𝑖𝑎[𝑏𝑐]. In fixed point 𝑝 ∈ 𝑀, taking into account (19), it is 

obviously equivalent to the relation 𝑅(휀𝑏 , 휀𝑐)휀𝑎 = ∇𝜀𝑏
(𝐶)(휀𝑎, 휀𝑐) −

∇𝜀𝑐
(𝐶)(휀𝑎 , 휀𝑏). Since the vectors {휀𝑎} form a basis of the subspace (𝐷Φ

√−1)
𝑝

, 

and projectors of module 𝒳(𝑀)𝐶  on the submodule 𝐷Φ
√−1  is the 

endomorphism 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 + √−1Φ) , then the identity of the 

𝑅(휀𝑏 , 휀𝑐)휀𝑎 = ∇𝜀𝑏
(𝐶)(휀𝑎 , 휀𝑐) − ∇𝜀𝑐

(𝐶)(휀𝑎 , 휀𝑏) can be rewritten in the form  
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𝑅(Φ2𝑋 + √−1Φ𝑋, Φ2𝑌 + √−1Φ𝑌)(Φ2𝑍 + √−1Φ𝑍) =

∇Φ2𝑋+√−1Φ𝑋(𝐶)(Φ2𝑍 + √−1Φ𝑍, Φ2𝑌 + √−1Φ𝑌) −

∇Φ2𝑌+√−1Φ𝑌(𝐶)(Φ2𝑍 + √−1Φ𝑍, Φ2𝑋 + √−1Φ𝑋); ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).  

 

Expanding this relation is linear and separating the real and imaginary parts 

of the resulting equation, we obtain an equivalent identity: 

 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 − 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 − 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 −
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = ∇Φ2𝑋(𝐶)(Φ2𝑍, Φ2𝑌) − ∇Φ2𝑋(𝐶)(Φ𝑍, Φ𝑌) −
∇Φ𝑋(𝐶)(Φ2𝑍, Φ𝑌) − ∇Φ𝑋(𝐶)(Φ𝑍, Φ2𝑌) − ∇Φ2𝑌(𝐶)(Φ2𝑍, Φ2𝑋) +
∇Φ2𝑌(𝐶)(Φ𝑍, Φ𝑋) + ∇Φ𝑌(𝐶)(Φ2𝑍, Φ𝑋) +
∇Φ𝑌(𝐶)(Φ𝑍, Φ2𝑋); ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).                  (39) 

 

We say that the identity (39) to the third additional identity curvature 

SGK-manifold of type II. 

 

Definition 5.3. We call the AC-manifold manifold of class 𝑅3, if its curvature 

tensor satisfies the equation: 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 − 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 − 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 −
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = 0; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).      (40) 

 

From the definition 5.3 and (39). 

 

Theorem 5.3. SGK-manifold is a manifold of type II class 𝑅3 if and only if  

 

∇Φ2𝑋(𝐶)(Φ2𝑍, Φ2𝑌) − ∇Φ2𝑋(𝐶)(Φ𝑍, Φ𝑌) − ∇Φ𝑋(𝐶)(Φ2𝑍, Φ𝑌) −
∇Φ𝑋(𝐶)(Φ𝑍, Φ2𝑌) − ∇Φ2𝑌(𝐶)(Φ2𝑍, Φ2𝑋) + ∇Φ2𝑌(𝐶)(Φ𝑍, Φ𝑋) +

∇Φ𝑌(𝐶)(Φ2𝑍, Φ𝑋) + ∇Φ𝑌(𝐶)(Φ𝑍, Φ2𝑋) = 0; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀). 

 

Let M – SGK-manifold of type II, which is a manifold of class 𝑅3. 

Then its Riemann curvature tensor satisfies the condition (40), which in the 

space of the associated G-structure can be written as:  

 

𝑅𝑗𝑘𝑙
𝑖 (Φ2𝑋)𝑘(Φ2𝑌)𝑙(Φ2𝑍)𝑗 − 𝑅𝑗𝑘𝑙

𝑖 (Φ2𝑋)𝑘(Φ𝑌)𝑙(Φ𝑍)𝑗 −

𝑅𝑗𝑘𝑙
𝑖 (Φ𝑋)𝑘(Φ2𝑌)𝑙(Φ𝑍)𝑗 − 𝑅𝑗𝑘𝑙

𝑖 (Φ𝑋)𝑘(Φ𝑌)𝑙(Φ2𝑍)𝑗 = 0. 

 

In view of (11) and the form of the matrix Ф, the last equation can be 

written as: 𝑅𝑎𝑏𝑐
�̂� 𝑋𝑏𝑌𝑐𝑍𝑎 + 𝑅�̂��̂�𝑐̂

𝑑 𝑋𝑏𝑌𝑐𝑍𝑎 = 0. This equality holds if and only 
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if 𝑅𝑎𝑏𝑐
�̂� = 𝑅�̂��̂�𝑐̂

𝑑 = 0. According to (2.8), 𝐶𝑎𝑏[𝑐𝑑] = 0. From this equality and 

(8) we have 𝐶𝑎𝑏𝑐𝑑 = 0. 

 

Thus we have proved. 

 

Theorem 5.4. SGK-manifold of type II is a manifold class 𝑅3 if and only if 

on the space of the associated G-structure 𝐶𝑎𝑏𝑐𝑑 = 𝐶𝑎𝑏𝑐𝑑 = 0. 

 

Since, 

𝑅𝑎𝑏𝑐̂
0 = 𝐴𝑎𝑏

0𝑐 − 𝐶0𝑐ℎ𝐶ℎ𝑎𝑏 − 𝛿𝑏
0𝛿𝑎

𝑐 = 0, 𝑅𝑎𝑏𝑐̂
𝑑 = 𝐴𝑎𝑏

𝑑𝑐 − 𝐶𝑑𝑐ℎ𝐶ℎ𝑎𝑏 −

𝛿𝑏
𝑐𝛿𝑎

𝑑, 𝑅𝑎𝑏𝑐̂
�̂� = 𝐴𝑎𝑏

�̂�𝑐 − 𝐶�̂�𝑐ℎ𝐶ℎ𝑎𝑏 − 𝛿𝑏
�̂�𝛿𝑎

𝑐 = 0,  

 

i.e. 𝑅𝑎𝑏𝑐̂
𝑖 = 𝐴𝑎𝑏

𝑖𝑐 − 𝐶𝑖𝑐ℎ𝐶ℎ𝑎𝑏 − 𝛿𝑏
𝑐𝛿𝑎

𝑖 . 

 

In fixed point 𝑝 ∈ 𝑀 it is obviously equivalent to the relation 𝑅(휀𝑏 , 휀𝑐̂)휀𝑎 =
𝐴(휀𝑎 , 휀𝑏 , 휀𝑐̂) + ∇𝜀�̂�

(𝐶)(휀𝑎 , 휀𝑏) − 휀𝑏〈휀𝑎, 휀𝑐̂〉 . Since the vectors {휀𝑎}  form a 

basis of the subspace (𝐷Φ
√−1)

𝑝
, and the vectors {휀�̂�} form a basis of the 

subspace (𝐷Φ
−√−1)

𝑝
 and projectors of the module 𝒳(𝑀)𝐶  to submodules 

𝐷Φ
√−1, 𝐷Φ

−√−1   are endomorphisms  𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 + √−1Φ),           

�̅� = �̅� ∘ ℓ =
1

2
(−Φ2 + √−1Φ) identity 𝑅(휀𝑏 , 휀𝑐̂)휀𝑎 = 𝐴(휀𝑎 , 휀𝑏 , 휀𝑐̂) +

∇𝜀�̂�
(𝐶)(휀𝑎 , 휀𝑏) − 휀𝑏〈휀𝑎 , 휀𝑐̂〉  can be rewritten in the form  

 

𝑅(Φ2𝑋 + √−1Φ𝑋, −Φ2𝑌 + √−1Φ𝑌)(Φ2𝑍 + √−1Φ𝑍) = 𝐴(Φ2𝑍 +

√−1Φ𝑍, Φ2𝑋 + √−1Φ𝑋, −Φ2𝑌 + √−1Φ𝑌) + ∇−Φ2𝑌+√−1Φ𝑌(𝐶)(Φ2𝑍 +

√−1Φ𝑍, Φ2𝑋 + √−1Φ𝑋) − (Φ2𝑋 + √−1Φ𝑋)〈−Φ2𝑌 + √−1Φ𝑌, Φ2𝑍 +

√−1Φ𝑍〉; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀). 
 

Expanding this relation by linearity, and separating the real and imaginary 

parts of the resulting equation and using (24), we obtain an equivalent 

identity: 
 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 + 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 − 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 +
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = −4𝐴(𝑍, 𝑋, 𝑌) + ∇Φ2𝑌(𝐶)(Φ2𝑍, Φ2𝑋) −
∇Φ2𝑌(𝐶)(Φ𝑍, Φ𝑋) + ∇Φ𝑌(𝐶)(Φ2𝑍, Φ𝑋) + ∇Φ𝑌(𝐶)(Φ𝑍, Φ2𝑋) −
2Φ2𝑋〈Φ𝑌, Φ𝑍〉 − 2Φ𝑋〈𝑌, Φ𝑍〉; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).    (41) 
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We say that the identity (41), fourth additional identity curvature 

SGK-manifold of type II. 

 

Definition 5.4. We call the AC-manifold manifold of class 𝑅4, if its curvature 

tensor satisfies the equation: 

 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 + 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 − 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 +
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = 0;  ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).     (42) 

 

Let M – SGK-manifold of type II, which is a manifold of class 𝑅4. 

Then its Riemann curvature tensor satisfies the condition (42), which in the 

space of the associated G-structure can be written as:  

 

𝑅𝑗𝑘𝑙
𝑖 (Φ2𝑋)𝑘(Φ2𝑌)𝑙(Φ2𝑍)𝑗 + 𝑅𝑗𝑘𝑙

𝑖 (Φ2𝑋)𝑘(Φ𝑌)𝑙(Φ𝑍)𝑗 −

𝑅𝑗𝑘𝑙
𝑖 (Φ𝑋)𝑘(Φ2𝑌)𝑙(Φ𝑍)𝑗 + 𝑅𝑗𝑘𝑙

𝑖 (Φ𝑋)𝑘(Φ𝑌)𝑙(Φ2𝑍)𝑗 = 0. 

 

In view of (11) and the form of the matrix Ф, the last equation can be 

written as: 𝑅𝑎𝑏𝑐̂
𝑑 𝑋𝑏𝑌𝑐𝑍𝑎 + 𝑅�̂��̂�𝑐

�̂� 𝑋𝑏𝑌𝑐𝑍𝑎 = 0. This equality holds if and only 

if 𝑅𝑎𝑏𝑐̂
𝑑 = 𝑅�̂��̂�𝑐

�̂� = 0 . According to (11), 𝐴𝑎𝑏
𝑑𝑐 − 𝐶𝑑𝑐ℎ𝐶ℎ𝑎𝑏 − 𝛿𝑏

𝑐𝛿𝑎
𝑑 = 0 . 

Simmetriruya last equality first in the indices a and b, then the indices c and 

d, we obtain 𝐴(𝑎𝑏)
(𝑑𝑐)

= 𝛿𝑏
𝑐𝛿𝑎

𝑑 =
1

2
𝛿𝑎𝑏

𝑐𝑑. Due to the symmetry of the tensor 𝐴𝑎𝑏
𝑐𝑑  

by the upper and lower pair of indices, the resulting identity can be rewritten 

as: 𝐴𝑎𝑏
𝑐𝑑 =

1

2
𝛿𝑎𝑏

𝑐𝑑 . Then the equality 𝐴𝑎𝑏
𝑑𝑐 − 𝐶𝑑𝑐ℎ𝐶ℎ𝑎𝑏 − 𝛿𝑏

𝑐𝛿𝑎
𝑑 = 0  can be 

written as 𝐶𝑑𝑐ℎ𝐶ℎ𝑎𝑏 = 𝛿𝑎𝑏
𝑐𝑑. 

 

Thus proved the following. 

 

Theorem 5.5. Let M – SGK-manifold of type II. Then the following 

conditions are equivalent: 

 

1) M is a manifold of class 𝑅4; 

2) on the space of the associated G-structure 𝐶𝑑𝑐ℎ𝐶ℎ𝑎𝑏 = 𝛿𝑎𝑏
𝑐𝑑;  

3) on the space of the associated G-structure 𝐴𝑎𝑏
𝑐𝑑 =

1

2
𝛿𝑎𝑏

𝑐𝑑, 

and as an intermediate result can be formulated in the following theorem. 

 

Theorem 5.6. Tensor Ф-holomorphic sectional curvature SGK-manifold of 

type II class 𝑅4 has the form:  
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𝐴(𝑍, 𝑋, 𝑌) = −
1

2
{Φ2𝑋〈Φ𝑌, Φ𝑍〉 + Φ𝑋〈𝑌, Φ𝑍〉}; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀). 

 

Consider the relations 𝑅𝑏𝑐̂�̂�
0 = 0, 𝑅𝑏𝑐̂�̂�

𝑎 = 0, 𝑅𝑏𝑐̂�̂�
�̂� = 2𝐶𝑎𝑏ℎ𝐶ℎ𝑐𝑑 −

2𝛿𝑎
[𝑐𝛿𝑏

𝑑]
, i.e. 𝑅𝑏𝑐̂�̂�

𝑖 = 2𝐶�̂�𝑏ℎ𝐶ℎ𝑐𝑑 − 2𝛿�̂�
[𝑐𝛿𝑏

𝑑]
. The last equality can be written 

as 𝑅(휀𝑐̂ , 휀�̂�)휀𝑏 = −2∇𝜀�̂�
(𝐶)(휀𝑏 , 휀�̂�) + 휀�̂�〈휀𝑏 , 휀𝑐̂〉 − 휀𝑐̂〈휀𝑏 , 휀�̂�〉 . Since the 

vectors {휀𝑎} form a basis of the subspace (𝐷Φ
√−1)

𝑝
, and the vectors {휀�̂�} form 

a basis of the subspace (𝐷Φ
−√−1)

𝑝
 and projectors of module 𝒳(𝑀)𝐶  to 

submodules 𝐷Φ
√−1, 𝐷Φ

−√−1  are endomorphisms 𝜋 = 𝜎 ∘ ℓ = −
1

2
(Φ2 +

√−1Φ), �̅� = �̅� ∘ ℓ =
1

2
(−Φ2 + √−1Φ) , identity 𝑅(휀𝑐̂ , 휀�̂�)휀𝑏 =

−2∇𝜀�̂�
(𝐶)(휀𝑏 , 휀�̂�) + 휀�̂�〈휀𝑏 , 휀𝑐̂〉 − 휀𝑐̂〈휀𝑏 , 휀�̂�〉 can be rewritten in the form  

 

𝑅(−Φ2𝑋 + √−1Φ𝑋, −Φ2𝑌 + √−1Φ𝑌)(Φ2𝑍 + √−1Φ𝑍) =

−2∇−Φ2𝑌+√−1Φ𝑌(𝐶)(−Φ2𝑋 + √−1Φ𝑋, Φ2𝑍 + √−1Φ𝑍) + (−Φ2𝑌 +

√−1Φ𝑌)〈−Φ2𝑋 + √−1Φ𝑋, Φ2𝑍 + √−1Φ𝑍〉 −

(−Φ2𝑋 + √−1Φ𝑋)〈−Φ2𝑌 + √−1Φ𝑌, Φ2𝑍 + √−1Φ𝑍〉; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).  

 

Expanding this relation by linearity, and separating the real and 

imaginary parts of the resulting equation, we obtain an equivalent identity: 

 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 + 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 + 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 −
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = −2∇Φ2𝑌(𝐶)(Φ2𝑋, Φ2𝑍) − 2∇Φ2𝑌(𝐶)(Φ𝑋, Φ𝑍) −
2∇Φ𝑌(𝐶)(Φ2𝑋, Φ𝑍) + 2∇Φ𝑌(𝐶)(Φ𝑋, Φ2𝑍) + Φ2𝑌〈Φ2𝑋, Φ2𝑍〉 +
Φ2𝑌〈Φ𝑋, Φ𝑍〉 + Φ𝑌〈Φ2𝑋, Φ𝑍〉 − Φ𝑌〈Φ𝑋, Φ2𝑍〉 − Φ2𝑋〈Φ2𝑌, Φ2𝑍〉 −
Φ𝑋〈Φ2𝑌, Φ𝑍〉 − Φ2𝑋〈Φ𝑌, Φ𝑍〉 + Φ𝑋〈Φ𝑌, Φ2𝑍〉;  ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).     (43) 

 

We say that the identity (41), the fifth additional identity curvature 

SGK-manifold of type II. 

 

Definition 5.5. We call the AC-manifold manifold of class 𝑅5, if its curvature 

tensor satisfies the equation: 

 

𝑅(Φ2𝑋, Φ2𝑌)Φ2𝑍 + 𝑅(Φ2𝑋, Φ𝑌)Φ𝑍 + 𝑅(Φ𝑋, Φ2𝑌)Φ𝑍 −
𝑅(Φ𝑋, Φ𝑌)Φ2𝑍 = 0; ∀𝑋, 𝑌, 𝑍 ∈ 𝒳(𝑀).     (44) 
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Let M – SGK-manifold of type II, which is a manifold of class 𝑅5. 

Then its Riemann curvature tensor satisfies the condition (44), which in the 

space of the associated G-structure can be written as: 

  

𝑅𝑗𝑘𝑙
𝑖 (Φ2𝑋)𝑘(Φ2𝑌)𝑙(Φ2𝑍)𝑗 + 𝑅𝑗𝑘𝑙

𝑖 (Φ2𝑋)𝑘(Φ𝑌)𝑙(Φ𝑍)𝑗 +

𝑅𝑗𝑘𝑙
𝑖 (Φ𝑋)𝑘(Φ2𝑌)𝑙(Φ𝑍)𝑗 − 𝑅𝑗𝑘𝑙

𝑖 (Φ𝑋)𝑘(Φ𝑌)𝑙(Φ2𝑍)𝑗 = 0. 

 

In view of (11) and the form of the matrix Ф, the last equation can be 

written as: 𝑅�̂�𝑏𝑐
𝑑 𝑋𝑏𝑌𝑐𝑍𝑎 + 𝑅𝑎�̂�𝑐̂

�̂� 𝑋𝑏𝑌𝑐𝑍𝑎 = 0. This equality holds if and only 

if 𝑅�̂�𝑏𝑐
𝑑 = 𝑅𝑎�̂�𝑐̂

�̂� = 0. According to (11), 𝐶𝑎𝑑ℎ𝐶ℎ𝑏𝑐 = 𝛿[𝑏
𝑎 𝛿𝑐]

𝑑 . 

 

Thus, we have proved. 

 

Theorem 5.7. SGK-manifold is a manifold of type II class 𝑅5 if and only if 

the space of the associated G-structure 𝐶𝑎𝑑ℎ𝐶ℎ𝑏𝑐 = 𝛿[𝑏
𝑎 𝛿𝑐]

𝑑 . 

 

Let's turn the equality 𝐶𝑎𝑑ℎ𝐶ℎ𝑏𝑐 = 𝛿[𝑏
𝑎 𝛿𝑐]

𝑑  first in the indices a and b, 

then the indices c and d, we obtain ∑ |𝐶𝑎𝑏𝑐|2
𝑎,𝑏,𝑐 =

1

2
𝑛(𝑛 − 1). From the 

resulting equation implies that for 𝑛 = 1, we have 𝐶𝑎𝑏𝑐 = 0, i.e. manifold is 

Kenmotsu. 

 

Thus we have proved the following. 

 

Theorem 5.8. SGK-manifold of type II class 𝑅5 of 3-dimensional manifold is 

Kenmotsu. 
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